Fraud Blocker Skip to main content

Proteomics Collection (page 5)

Proteomics, the study of proteins and their functions within an organism, is a fascinating field that unravels the intricate workings of life

Background imageProteomics Collection: Ribonuclease A molecule F006 / 9768

Ribonuclease A molecule F006 / 9768
Ribonuclease A (RNAse A), molecular model. Ribonuclease (RNase) is a type of nuclease that catalyses the degradation of RNA (ribonucleic acid)

Background imageProteomics Collection: Pepsin stomach enzyme F006 / 9767

Pepsin stomach enzyme F006 / 9767
Pepsin stomach enzyme, molecular model. Pepsin is a protease enzyme that is secreted as part of gastric juice into the stomach in an inactive form known as pepsinogen

Background imageProteomics Collection: Flock house virus capsid F006 / 9755

Flock house virus capsid F006 / 9755
Flock house virus capsid, molecular model. The flock house virus is a member of the Nodaviridae family. It kills the New Zealand grass grub insect

Background imageProteomics Collection: Xylose isomerase complex F006 / 9765

Xylose isomerase complex F006 / 9765
Xylose isomerase complex. Molecular model of the enzyme D-xylose isomerase bound to the sugar alcohol sorbitol. D-xylose isomerase is involved in fructose and mannose metabolism

Background imageProteomics Collection: H-Ras p21 oncogene protein F006 / 9766

H-Ras p21 oncogene protein F006 / 9766
H-Ras p21 oncogene protein, molecular model. The Ras proteins are involved in transmitting signals within cells. Excessive signalling can lead to conditions such as cancer

Background imageProteomics Collection: Phosphofructokinase bacterial enzyme F006 / 9762

Phosphofructokinase bacterial enzyme F006 / 9762
Phosphofructokinase enzyme, molecular model. This enzyme, from the bacterium Bacillus stearothermophilus, is involved in regulating the process of releasing energy from glucose

Background imageProteomics Collection: tRNA molecule F006 / 9764

tRNA molecule F006 / 9764
Transfer RNA (tRNA), molecular model. tRNA (transfer ribonucleic acid) translates messenger RNA (mRNA) into a protein product

Background imageProteomics Collection: H-Ras p21 oncogene protein F006 / 9763

H-Ras p21 oncogene protein F006 / 9763
H-Ras p21 oncogene protein, molecular model. The Ras proteins are involved in transmitting signals within cells. Excessive signalling can lead to conditions such as cancer

Background imageProteomics Collection: Kinase inhibitor complex F006 / 9760

Kinase inhibitor complex F006 / 9760
Kinase inhibitor complex. Molecular model of a leucettine kinase inhibitor bound to a serine threonine kinase protein

Background imageProteomics Collection: Marburg viral protein 35 and RNA F006 / 9759

Marburg viral protein 35 and RNA F006 / 9759
Marburg viral protein 35 and RNA. Molecular model of the Marburg viral protein 35 (VP35) bound to a molecule of double stranded RNA (ribonucleic acid)

Background imageProteomics Collection: Insulin molecule F006 / 9761

Insulin molecule F006 / 9761
Insulin molecule. Molecular model of the hormone insulin from a pig. Insulin consists of two peptide chains, A and B, which are linked by disulphide bridges

Background imageProteomics Collection: Eye lens protein molecule F006 / 9758

Eye lens protein molecule F006 / 9758
Eye lens protein. Molecular model of gammaB-crystallin, a protein found in the lens of the eye. The regular arrangement of the protein in the lens is thought to be responsible for its transparency

Background imageProteomics Collection: Methionine aminopeptidase molecule F006 / 9756

Methionine aminopeptidase molecule F006 / 9756
Methionine aminopeptidase, molecular model. This enzyme removes the amino acid methionine from proteins

Background imageProteomics Collection: Hepatitis C glycoprotein and antibody F006 / 9757

Hepatitis C glycoprotein and antibody F006 / 9757
Hepatitis C glycoprotein and antibody. Molecular model of the E2 envelope glycoprotein from the hepatitis C virus bound to a neutralising antibody

Background imageProteomics Collection: Malignant brain-tumor-like protein F006 / 9754

Malignant brain-tumor-like protein F006 / 9754
Malignant brain-tumour-like protein. Molecular model of the human lethal(3) malignant brain-tumour-like protein (Malignant brain-tumour-like protein (L3MBTL3)

Background imageProteomics Collection: Guanine-responsive riboswitch F006 / 9753

Guanine-responsive riboswitch F006 / 9753
Guanine-responsive riboswitch, molecular model. This protein regulates gene expression by binding to the nucleotide guanine to switch off transcription

Background imageProteomics Collection: UV-damaged DNA-binding protein and DNA F006 / 9750

UV-damaged DNA-binding protein and DNA F006 / 9750
UV-damaged DNA-binding protein and DNA. Molecular model of UV-damaged DNA-binding protein (UV-DDB) complexed with DNA (deoxyribonucleic acid, red and blue)

Background imageProteomics Collection: Plexin signal transduction molecule F006 / 9751

Plexin signal transduction molecule F006 / 9751
Plexin signal transduction molecule. Molecular model of plexin-A4 a signal transduction protein that is involved in neural maintenance and regeneration

Background imageProteomics Collection: Multidrug efflux pump molecule F006 / 9748

Multidrug efflux pump molecule F006 / 9748
Multidrug efflux pump. Molecular model of the multidrug efflux pump AcrB from the bacterium Escherichia coli transporting two doxorubicin molecules

Background imageProteomics Collection: RNA triplet repeat expansion F006 / 9749

RNA triplet repeat expansion F006 / 9749
RNA triplet repeat expansion. Molecular model of a CUG triplet repeat expansion in a molecule of double stranded RNA (ribonucleic acid)

Background imageProteomics Collection: Flu virus surface protein and drug F006 / 9745

Flu virus surface protein and drug F006 / 9745
Flu virus surface protein and drug. Molecular model of the neuraminidase glycoprotein enzyme from on the surface of the influenza A (flu) virus bound to the drug zanamivir

Background imageProteomics Collection: Human lysine-specific demethylase F006 / 9747

Human lysine-specific demethylase F006 / 9747
Human lysine-specific demethylase, molecular model. This enzyme removes methyl groups from lysine residues in histones (proteins that package DNA)

Background imageProteomics Collection: Rhinovirus capsid, molecular model F006 / 9737

Rhinovirus capsid, molecular model F006 / 9737
Rhinovirus capsid, molecular model. This is human rhinovirus. The rhinovirus infects the upper respiratory tract and is the cause of the common cold. It is spread by coughs and sneezes

Background imageProteomics Collection: Beta-lactamase molecule F006 / 9746

Beta-lactamase molecule F006 / 9746
Beta-lactamase enzyme, molecular model. This bacterial protein provides resistance to beta-lactam antibiotics, which include penicillin

Background imageProteomics Collection: Human muscle aldolase, molecular model F006 / 9742

Human muscle aldolase, molecular model F006 / 9742
Human muscle aldolase. Molecular model of the enzyme human muscle aldolase complexed with its substrate fructose 1, 6-bisphosphate

Background imageProteomics Collection: ATP-binding cassette transporter F006 / 9743

ATP-binding cassette transporter F006 / 9743
ATP-binding cassette transporter. Molecular model of the human mitochondrial ATP-binding cassette transporter ABCB10. This protein is found on the inner membrane of mitochondria

Background imageProteomics Collection: Transcription factor bound to DNA F006 / 9744

Transcription factor bound to DNA F006 / 9744
Transcription factor bound to DNA. Molecular model of the human ETS translocation variant 1 (etv1) bound to a molecule of DNA (deoxyribonucleic acid)

Background imageProteomics Collection: Beta-lactamase-like protein 2 molecule F006 / 9741

Beta-lactamase-like protein 2 molecule F006 / 9741
Beta-lactamase-like protein 2, molecular model

Background imageProteomics Collection: Stress-responsive activator protein F006 / 9740

Stress-responsive activator protein F006 / 9740
Stress-responsive activator protein. Molecular model of the stress-responsive activator of p300 (strap) protein. This protein is activated when certain types of DNA (deoxyribonucleic acid)

Background imageProteomics Collection: Fatty acid binding protein 9 molecule F006 / 9739

Fatty acid binding protein 9 molecule F006 / 9739
Fatty acid binding protein 9. Molecular model of human testis-specific fatty acid binding protein 9

Background imageProteomics Collection: Ebola virus glycoprotein and antibody F006 / 9738

Ebola virus glycoprotein and antibody F006 / 9738
Ebola virus glycoprotein and antibody. Molecular model of a surface glycoprotein from the Ebola virus (EBOV) bound to an antibody

Background imageProteomics Collection: Urea channel molecule F006 / 9735

Urea channel molecule F006 / 9735
Urea channel. Molecular model of the proton-gated urea channel from the bacterium Helicobacter pylori. This channel opens in acidic environments, allowing the entry of urea into the cell

Background imageProteomics Collection: Leptin receptor molecule F006 / 9736

Leptin receptor molecule F006 / 9736
Leptin receptor. Molecular model of a leptin receptor complexed with an antibody. Leptin is a hormone produced by adipose (fat) tissue

Background imageProteomics Collection: DNA clamp complexed with DNA molecule F006 / 9732

DNA clamp complexed with DNA molecule F006 / 9732
DNA clamp complexed with DNA molecule. Molecular model showing a sliding DNA (deoxyribonucleic acid) clamp (ring) complexed with a molecule of DNA (blue and red)

Background imageProteomics Collection: GMP synthetase enzyme F006 / 9734

GMP synthetase enzyme F006 / 9734
GMP synthetase enzyme, molecular model. This enzyme, guanine monophosphate synthetase, catalyses the reaction that converts xanthosine monophosphate to guanosine monophosphate

Background imageProteomics Collection: Single stranded DNA-binding protein F006 / 9733

Single stranded DNA-binding protein F006 / 9733
Single stranded DNA-binding protein (SSBP). Molecular model of a protein that binds to the single stranded DNA (deoxyribonucleic acid) in human mitochondria

Background imageProteomics Collection: Sir3 gene silencer acting on DNA F006 / 9730

Sir3 gene silencer acting on DNA F006 / 9730
Sir3 gene silencer acting on DNA, molecular model. Sir3 (light blue) is acting on a circular strand of DNA (deoxyribonucleic acid, pink)

Background imageProteomics Collection: Parathion hydrolase enzyme F006 / 9731

Parathion hydrolase enzyme F006 / 9731
Parathion hydrolase, molecular model. This enzyme hydrolyses bonds in organophosphates, which include pesticides and the nerve gas sarin

Background imageProteomics Collection: Tumour suppressor protein with DNA F006 / 9729

Tumour suppressor protein with DNA F006 / 9729
Tumour suppressor protein. Molecular model of the tumour suppressor protein p53 (beige) bound to a molecule of DNA (deoxyribonucleic acid, red and blue)

Background imageProteomics Collection: Iron-regulatory protein bound to RNA F006 / 9727

Iron-regulatory protein bound to RNA F006 / 9727
Iron-regulatory protein bound to RNA, molecular model. Iron regulatory protein 1 (IRP1, purple) bound to a short strand of RNA (ribonucleic acid, red) that includes iron-responsive elements (IREs)

Background imageProteomics Collection: DNA repair enzyme, molecular model F006 / 9726

DNA repair enzyme, molecular model F006 / 9726
DNA repair enzyme. Molecular model of the DNA (deoxyribonucleic acid) repair enzyme alpha-ketoglutarate-dependent dioxygenase bound to a molecule of DNA (red and blue)

Background imageProteomics Collection: Oxidoreductase enzyme complex F006 / 9725

Oxidoreductase enzyme complex F006 / 9725
Oxidoreductase enzyme complex, molecular model. This is the membrane-bound domain formed from of a complex of NADH-quinone oxidoreductase subunits

Background imageProteomics Collection: Saccharide transport protein F006 / 9722

Saccharide transport protein F006 / 9722
Saccharide transport protein. Molecular model of the phosphorylation-coupled saccharide transporter EIIC from the bacterium Bacillus cereus. EIIC is an integral membrane protein

Background imageProteomics Collection: Aldo-keto reductase enzyme and ibuprofen F006 / 9724

Aldo-keto reductase enzyme and ibuprofen F006 / 9724
Aldo-keto reductase enzyme and ibuprofen. Molecular model of the enzyme aldo-keto reductase family 1 member C3 (AKR1C3) bound to a molecule of the anti-inflammatory drug ibuprofen

Background imageProteomics Collection: SMAD4 protein domain bound to DNA F006 / 9723

SMAD4 protein domain bound to DNA F006 / 9723
SMAD4 protein domain bound to DNA, molecular model. This strand of DNA (deoxyribonucleic acid, red and blue) is surrounded by MH1 domains of the SMAD4 (Mothers against decapentaplegic homolog 4)

Background imageProteomics Collection: Transcription activator and DNA F006 / 9721

Transcription activator and DNA F006 / 9721
Transcription activator and DNA. Molecular model of the transcriptional activator of the multidrug efflux transporter BmrR bound to a molecule of DNA (deoxyribonucleic acid, red and blue)

Background imageProteomics Collection: Methyltransferase complexed with DNA F006 / 9711

Methyltransferase complexed with DNA F006 / 9711
Methyltransferase complexed with DNA, molecular model. The strand of DNA (deoxyribonucleic acid, red and blue) is enclosed by DNA methyltransferase 1 (DNMT-1, beige)

Background imageProteomics Collection: Pepsinogen molecule F006 / 9710

Pepsinogen molecule F006 / 9710
Pepsinogen. Molecular model of pepsinogen, the inactive precursor to the digestive enzyme pepsin. Pepsion, which is released by the stomach digests proteins



All Professionally Made to Order for Quick Shipping

Proteomics, the study of proteins and their functions within an organism, is a fascinating field that unravels the intricate workings of life. From anaesthetics inhibiting ion channels to immunoglobulin G antibody molecules, proteomics delves into the molecular mechanisms that shape our existence. In the realm of brain research, scientists explore how proteins influence cognition and behavior. They investigate DNA nucleosomes' structure and function, unraveling their role in gene regulation. Antibodies take center stage as artwork showcases their diverse forms and crucial role in immune defense. Zinc fingers bound to a DNA strand highlight protein-DNA interactions critical for genetic processes. Meanwhile, manganese superoxide dismutase enzyme aids in protecting cells from oxidative stress. The SARS coronavirus protein becomes a subject of intense scrutiny as researchers strive to understand its pathogenicity. Cytochrome b5 molecule reveals insights into electron transfer reactions within cells while glutamine synthetase enzyme plays a vital role in nitrogen metabolism. Lastly, RNA-editing enzymes offer potential therapeutic targets for various diseases with their ability to modify genetic information at the RNA level. Through proteomics, we unlock nature's secrets one protein at a time - deciphering their structures, unraveling their functions, and ultimately enhancing our understanding of life itself.