Fraud Blocker Skip to main content

Macromolecule Collection

Background imageMacromolecule Collection: Nanotube technology

Nanotube technology. Computer artwork of four cylindrical fullerenes (carbon nanotubes) of varying size, with the smaller ones nested inside the larger ones

Background imageMacromolecule Collection: SARS coronavirus protein

SARS coronavirus protein. Molecular model of the ORF-9b protein produced by the SARS (severe acute respiratory syndrome) coronavirus

Background imageMacromolecule Collection: Zinc fingers bound to a DNA strand

Zinc fingers bound to a DNA strand, molecular model. The double helix of DNA (deoxyribonucleic acid, red and yellow) is seen here with two Zif268 proteins (blue and green)

Background imageMacromolecule Collection: Carbon nanotube

Carbon nanotube. Computer artwork showing the hexagonal carbon structure of a nanotube, or buckytube

Background imageMacromolecule Collection: Fullerene molecule, computer artwork

Fullerene molecule, computer artwork
Fullerene molecule. Computer artwork of the spherical fullerene molecule C320. Fullerenes are a structural type (allotrope) of carbon

Background imageMacromolecule Collection: Buckyball molecule

Buckyball molecule. Computer artwork of a molecule of buckminsterfullerene (C60), a spherical fullerene and the first fullerene to be discovered (in 1985)

Background imageMacromolecule Collection: Nanotube technology, computer artwork

Nanotube technology, computer artwork
Nanotube technology. Computer artwork of a cylindrical fullerene molecule (carbon nanotube). The hexagonal carbon structure of the nanotube is shown here

Background imageMacromolecule Collection: TFAM transcription factor bound to DNA C015 / 7059

TFAM transcription factor bound to DNA C015 / 7059
TFAM transcription factor bound to DNA, molecular model. Human mitochondrial transcription factor A (TFAM, green) bound to a strand of DNA (deoxyribonucleic acid, blue and pink)

Background imageMacromolecule Collection: Adenovirus hexon protein

Adenovirus hexon protein, molecular model. Hexon proteins are part of the protein coat or shell (capsid) of adenoviruses

Background imageMacromolecule Collection: High-contrast direct DNA image, TEM

High-contrast direct DNA image, TEM
High-contrast direct DNA image. Coloured transmission electron micrograph (TEM) of the first high-contrast direct image of a bundle (fibre) of strands of DNA (deoxyribonucleic acid)

Background imageMacromolecule Collection: Thrombin complexed with fibrinogen C015 / 7149

Thrombin complexed with fibrinogen C015 / 7149
Thrombin complexed with fibrinogen, molecular model. The thrombin molecules (left and right, brown and pink) are bound to the central part of the fibrinogen molecule (centre, multiple colours)

Background imageMacromolecule Collection: Human polio virus, molecular model

Human polio virus, molecular model
Human polio virus capsid, molecular model. Poliovirus causes poliomyelitis, a disease that can cause paralysis in up to 2 percent of patients, and in some cases death

Background imageMacromolecule Collection: MscL ion channel protein structure

MscL ion channel protein structure. Molecular model showing the protein structure of a Mechanosensitive Channel of Large Conductance (MscL) from a Mycobacterium tuberculosis bacterium

Background imageMacromolecule Collection: Cucumber mosaic virus, computer model

Cucumber mosaic virus, computer model
Cucumber mosaic virus (CMV), computer model. This image was created using molecular modelling software and data from X-ray crystallography

Background imageMacromolecule Collection: Murine norovirus, computer model

Murine norovirus, computer model
Murine norovirus (MNV), computer model. This image was created using molecular modelling software and data from cryo-electron microscopy

Background imageMacromolecule Collection: Murine norovirus with antibody fragments

Murine norovirus with antibody fragments
Murine norovirus (MNV) with antibody fragments, computer model. This image was created using molecular modelling software and data from cryo- electron microscopy

Background imageMacromolecule Collection: Illustration of macromolecule of sodium chloride (salt)

Illustration of macromolecule of sodium chloride (salt)

Background imageMacromolecule Collection: Conceptual image of polyomavirus

Conceptual image of polyomavirus

Background imageMacromolecule Collection: Conceptual image of a ubiquitous virus

Conceptual image of a ubiquitous virus. A ubiquitous virus is contagious in early childhood through the respiratory tract

Background imageMacromolecule Collection: Ricin A-chain, artwork C017 / 3653

Ricin A-chain, artwork C017 / 3653
Ricin A-chain. Computer artwork showing the enzymatically active A-chain from a molecule of the toxic protein ricin. Ricin comprises two entwined amino acid chains; A (seen here) and B (not shown)

Background imageMacromolecule Collection: TATA box-binding protein complex C017 / 7082

TATA box-binding protein complex C017 / 7082
TATA box-binding protein complex. Molecular model showing a TATA box-binding protein (TBP, green) complexed with a strand of DNA (deoxyribonucleic acid, yellow) and transcription factor IIB

Background imageMacromolecule Collection: TATA box-binding protein complex C017 / 7088

TATA box-binding protein complex C017 / 7088
TATA box-binding protein complex. Molecular model showing a TATA box-binding protein (TBP, green) complexed with a strand of DNA (deoxyribonucleic acid, yellow) and transcription factor IIB

Background imageMacromolecule Collection: Ricin molecule, artwork C017 / 3652

Ricin molecule, artwork C017 / 3652
Ricin molecule. Computer artwork showing the structure of a molecule of the toxic protein ricin. Ricin comprises two entwined amino acid chains; A (yellow) and B (blue)

Background imageMacromolecule Collection: TATA box-binding protein complex C017 / 7084

TATA box-binding protein complex C017 / 7084
TATA box-binding protein complex. Molecular model showing a TATA box-binding protein (TBP, green) complexed with a strand of DNA (deoxyribonucleic acid, yellow) and transcription factor IIB

Background imageMacromolecule Collection: Ricin molecule, artwork C017 / 3651

Ricin molecule, artwork C017 / 3651
Ricin molecule. Computer artwork showing the structure of a molecule of the toxic protein ricin. Ricin comprises two entwined amino acid chains; A (yellow) and B (blue)

Background imageMacromolecule Collection: Ricin molecule, artwork C017 / 3650

Ricin molecule, artwork C017 / 3650
Ricin molecule. Computer artwork showing the structure of a molecule of the toxic protein ricin. Ricin comprises two entwined amino acid chains; A (yellow) and B (blue)

Background imageMacromolecule Collection: HK97 bacteriophage capsid

HK97 bacteriophage capsid, molecular model. Bacteriophages are viruses that infect bacteria, in this case enterobacteria such as E. coli (Escherichia coli), with the phage head shown here

Background imageMacromolecule Collection: Chikungunya virus capsid

Chikungunya virus capsid, molecular model. This virus, transmitted by mosquitoes in tropical Africa and Asia, causes fever and joint pain in humans, similar to dengue fever

Background imageMacromolecule Collection: HK97 bacteriophage procapsid

HK97 bacteriophage procapsid. Molecular model showing the structure of the prohead-I procapsid of the HK97 bacteriophage

Background imageMacromolecule Collection: Turnip yellow mosaic virus capsid

Turnip yellow mosaic virus capsid, molecular model. This virus infects a wide variety of plants, including crops such as turnips and cabbages, causing yellow patches on the leaves

Background imageMacromolecule Collection: Sindbis virus capsid, molecular model

Sindbis virus capsid, molecular model. This virus, transmitted by mosquitoes, causes sindbis fever in humans. In viruses, the capsid is the protein shell that encloses the genetic material

Background imageMacromolecule Collection: Murine polyomavirus capsid

Murine polyomavirus capsid, molecular model. This virus, one of a range named for their potential to cause multiple tumours, infects mice

Background imageMacromolecule Collection: Brome mosaic virus capsid

Brome mosaic virus capsid, molecular model. This plant virus infects grasses, especially brome grasses, and also barley. It causes mosaic patches of discolouration

Background imageMacromolecule Collection: Cowpea chlorotic mottle virus capsid

Cowpea chlorotic mottle virus capsid, molecular model. This virus (CCMV) infects the cowpea plant (Vigna unguiculata), causing yellow spots of discolouration

Background imageMacromolecule Collection: Potassium ion channel protein structure

Potassium ion channel protein structure. Molecular model of a KcsA potassium ion (K+) channel from Streptomyces lividans bacteria

Background imageMacromolecule Collection: Streptavidin-biotin molecular complex

Streptavidin-biotin molecular complex. Molecular model of a single-strand binding complex of streptavidin (ribbons) and biotin (space-filled model, centre). Biotin is also known as vitamin B7

Background imageMacromolecule Collection: Potassium ion channel beta subunit

Potassium ion channel beta subunit. Molecular model showing the structure a beta subunit of a voltage-dependent potassium (K+) channel

Background imageMacromolecule Collection: KCNQ ion channel protein structure

KCNQ ion channel protein structure. Molecular model showing the protein structure of an ion channel domain

Background imageMacromolecule Collection: Potassium ion channel cavity structure

Potassium ion channel cavity structure. Molecular model showing the structure of a cavity formed by potassium ion channel proteins

Background imageMacromolecule Collection: Avian polyomavirus capsid

Avian polyomavirus capsid, molecular model. This virus, one of a range named for their potential to cause multiple tumours, infects birds. Discovered in budgerigars in 1981, it is often fatal

Background imageMacromolecule Collection: Cytoplasmic polyhedrosis virus capsid

Cytoplasmic polyhedrosis virus capsid, molecular model

Background imageMacromolecule Collection: TATA box-binding protein complex C017 / 7090

TATA box-binding protein complex C017 / 7090
TATA box-binding protein complex. Molecular model showing a TATA box-binding protein (TBP, green) complexed with a strand of DNA (deoxyribonucleic acid, spheres) and transcription factor IIB

Background imageMacromolecule Collection: Theilers encephalomyelitis virus capsid

Theilers encephalomyelitis virus capsid, molecular model. This virus, which causes brain and spinal cord inflammation in mice, is used in research

Background imageMacromolecule Collection: TATA box-binding protein complex C017 / 7085

TATA box-binding protein complex C017 / 7085
TATA box-binding protein complex. Molecular model showing a TATA box-binding protein (TBP, green) complexed with a strand of DNA (deoxyribonucleic acid, yellow) and transcription factor IIB

Background imageMacromolecule Collection: Ricin A-chain, artwork C017 / 3654

Ricin A-chain, artwork C017 / 3654
Ricin A-chain. Computer artwork showing the enzymatically active A-chain from a molecule of the toxic protein ricin. Ricin comprises two entwined amino acid chains; A (seen here) and B (not shown)

Background imageMacromolecule Collection: Tobacco necrosis virus capsid

Tobacco necrosis virus capsid, molecular model. This plant virus infects a wide rage of plants, including the tobacco plant for which it is named. The virus causes tissue death (necrosis)

Background imageMacromolecule Collection: Ricin molecule, artwork C017 / 3649

Ricin molecule, artwork C017 / 3649
Ricin molecule. Computer artwork showing the structure of a molecule of the toxic protein ricin. Ricin comprises two entwined amino acid chains; A (yellow) and B (blue)

Background imageMacromolecule Collection: TATA box-binding protein complex C017 / 7083

TATA box-binding protein complex C017 / 7083
TATA box-binding protein complex. Molecular model showing a TATA box-binding protein (TBP, green) complexed with a strand of DNA (deoxyribonucleic acid, yellow) and transcription factor IIB

Background imageMacromolecule Collection: Grapevine fanleaf virus capsid

Grapevine fanleaf virus capsid, molecular model. This plant virus is named for its infection of grape vines. It is transmitted by the nematode worm Xiphinema index

Background imageMacromolecule Collection: VEE equine encephalitis virus capsid

VEE equine encephalitis virus capsid
Venezuelan equine encephalitis virus capsid, molecular model. This mosquito-borne virus can kill horses and other equine species, causing brain and spinal cord inflammation

Background imageMacromolecule Collection: Adenosine molecule

Adenosine molecule
Adenosine monophosphate (AMP), molecular model. Nucleotide used as a monomer in RNA

Background imageMacromolecule Collection: Murine minute virus capsid

Murine minute virus capsid, molecular model. This parvovirus infects mice, its only known natural host

Background imageMacromolecule Collection: TATA box-binding protein complex C017 / 7089

TATA box-binding protein complex C017 / 7089
TATA box-binding protein complex. Molecular model showing a TATA box-binding protein (TBP, green) complexed with a strand of DNA (deoxyribonucleic acid, spheres) and transcription factor IIB

Background imageMacromolecule Collection: SV40 virus capsid, molecular model C018 / 7904

SV40 virus capsid, molecular model C018 / 7904
SV40 virus capsid, molecular model. Simian virus 40 (SV40) is found in monkeys such as Rhesus monkeys and macaques. Potentially tumour-causing, it is used in laboratory research and in vaccines

Background imageMacromolecule Collection: SV40 virus capsid, molecular model C018 / 7903

SV40 virus capsid, molecular model C018 / 7903
SV40 virus capsid, molecular model. Simian virus 40 (SV40) is found in monkeys such as Rhesus monkeys and macaques. Potentially tumour-causing, it is used in laboratory research and in vaccines

Background imageMacromolecule Collection: T-cell receptor bound to enterotoxin

T-cell receptor bound to enterotoxin, molecular model. The T cell receptor (TCR) is a protein complex found on the surface of a type of white blood cell called T lymphocytes (or T cells)

Background imageMacromolecule Collection: Bird egg white protein, molecular model

Bird egg white protein, molecular model. This is a deglycosylated form of the egg white glycoprotein avidin, obtained from a chicken (Gallus gallus)

Background imageMacromolecule Collection: Reversibly switchable fluorescent protein

Reversibly switchable fluorescent protein, molecular model

Background imageMacromolecule Collection: Excisionase complex with DNA

Excisionase complex with DNA. Molecular model of three excisionase proteins (bottom, purple, green and blue) bound to a strand of DNA (top, deoxyribonucleic acid)

Background imageMacromolecule Collection: Epstein-Barr virus protein and DNA

Epstein-Barr virus protein and DNA. Molecular model of the DNA-binding domain of a viral protein (pink-blue) bound to a lytic gene promoter element (viral strand of DNA, left)

Background imageMacromolecule Collection: DNA translocase, molecular model

DNA translocase, molecular model
ftsk, , protein, biomolecule, macromolecule, translocase, enzyme, pseudomonas aeruginosa, bacteria, biochemistry, biology, genetics, molecular biology, proteomics, artwork, illustration

Background imageMacromolecule Collection: Ebola virus transcription factor fragment

Ebola virus transcription factor fragment. Molecular model of the C-terminal domain (CTD) of Ebola virus transcription factor VP30

Background imageMacromolecule Collection: Bacterial twitching motility protein

Bacterial twitching motility protein
pilt, , protein, biomolecule, macromolecule, bacterial twitching motility, enzyme, aquifex aeolicus, bacterium, biochemistry, biology, molecular biology, proteomics, bacteriology, microbiology

Background imageMacromolecule Collection: RuvBL1 helicase enzyme

RuvBL1 helicase enzyme, molecular model

Background imageMacromolecule Collection: Metal-binding protein bound to DNA

Metal-binding protein bound to DNA. Molecular model of the bacterial metal-binding protein NikR (bottom) bound to a strand of DNA (top, helical, deoxyribonucleic acid)

Background imageMacromolecule Collection: Muscle contraction proteins

Muscle contraction proteins. Molecular model of muscle protein motor cross-bridges during contraction in muscle. The cross-bridge is seen from the side, with contraction taking place horizontally

Background imageMacromolecule Collection: Buckminsterfullerene molecule C016 / 8354

Buckminsterfullerene molecule C016 / 8354
Buckminsterfullerene molecule

Background imageMacromolecule Collection: Nanotube structure, artwork C016 / 8888

Nanotube structure, artwork C016 / 8888
This image may not be used in educational posters Nanotube structure. Computer artwork of the structure of a cylindrical nanotube

Background imageMacromolecule Collection: Nanotube structure, artwork C016 / 8889

Nanotube structure, artwork C016 / 8889
Nanotube structure. Computer artwork of the structure of a cylindrical nanotube. This molecule is a type of fullerene, a structural type (allotrope) of carbon

Background imageMacromolecule Collection: Nanotube structure, artwork C016 / 8886

Nanotube structure, artwork C016 / 8886
Nanotube structure. Computer artwork of the structure of a cylindrical nanotube. This molecule is a type of fullerene, a structural type (allotrope) of carbon

Background imageMacromolecule Collection: Nanotube structure, artwork C016 / 8887

Nanotube structure, artwork C016 / 8887
Nanotube structure. Computer artwork of the structure of a cylindrical nanotube. This molecule is a type of fullerene, a structural type (allotrope) of carbon

Background imageMacromolecule Collection: Nanotube structure, artwork C016 / 8890

Nanotube structure, artwork C016 / 8890
Nanotube structure. Computer artwork of the structure of a cylindrical nanotube. This molecule is a type of fullerene, a structural type (allotrope) of carbon

Background imageMacromolecule Collection: Nanotube structure, artwork C016 / 8885

Nanotube structure, artwork C016 / 8885
Nanotube structure. Computer artwork of the structure of a cylindrical nanotube. This molecule is a type of fullerene, a structural type (allotrope) of carbon

Background imageMacromolecule Collection: Nanotube structure, artwork C016 / 8891

Nanotube structure, artwork C016 / 8891
Nanotube structure. Computer artwork of the structure of a cylindrical nanotube. This molecule is a type of fullerene, a structural type (allotrope) of carbon

Background imageMacromolecule Collection: Nanotube structure, artwork C016 / 8883

Nanotube structure, artwork C016 / 8883
Nanotube structure. Computer artwork of the structure of a cylindrical nanotube. This molecule is a type of fullerene, a structural type (allotrope) of carbon

Background imageMacromolecule Collection: Nanotube structure, artwork C016 / 8884

Nanotube structure, artwork C016 / 8884
Nanotube structure. Computer artwork of the structure of a cylindrical nanotube. This molecule is a type of fullerene, a structural type (allotrope) of carbon

Background imageMacromolecule Collection: Alpha-beta T-cell receptor

Alpha-beta T-cell receptor, molecular model. The T cell receptor (TCR) is a protein complex found on the surface of a type of white blood cell called T lymphocytes (or T cells)

Background imageMacromolecule Collection: Carbamoylsarcosine amidase enzyme

Carbamoylsarcosine amidase enzyme, molecular model

Background imageMacromolecule Collection: Genomic HIV-RNA duplex

Genomic HIV-RNA duplex, molecular model

Background imageMacromolecule Collection: Transducin protein beta-gamma complex

Transducin protein beta-gamma complex. Molecular model of the beta-gamma dimer of the heterotrimeric G protein transducin

Background imageMacromolecule Collection: Nerve growth factor bound to receptor

Nerve growth factor bound to receptor, molecular model. Nerve growth factor (NGF) complexed with the TrkA receptor. NGF is a neurotrophin that acts on the development and function of nerves

Background imageMacromolecule Collection: Chromosome segregation protein

Chromosome segregation protein, molecular model. This proteins function is to aid the process of chromosome segregation during cell division and replication

Background imageMacromolecule Collection: Nerve growth factor protein complex

Nerve growth factor protein complex, molecular model. This complex consists of nerve growth factor (NGF) in complex with four binding proteins

Background imageMacromolecule Collection: Thymidylic acid-ribonuclease A complex

Thymidylic acid-ribonuclease A complex. Molecular model of a thymidylic acid tetramer (blue) in complex with ribonuclease A (red)



All products are expertly crafted, using premium materials, tailored to your specifications and promptly shipped


EDITORS COMMENTS

Macromolecules, the building blocks of life, are at the forefront of scientific innovation. Nanotube technology has revolutionized various fields, enabling advancements in medicine and electronics. In this captivating computer artwork, we witness the intricate Zinc fingers binding to a DNA strand, showcasing their crucial role in gene regulation. Carbon nanotubes have also emerged as remarkable materials with immense potential. Their unique structure and properties make them ideal for applications ranging from energy storage to drug delivery systems. Computer-generated images depict these carbon nanotubes in all their glory. The SARS coronavirus protein is another macromolecule that has garnered significant attention due to its role in viral infection. Scientists tirelessly study it to develop effective treatments against deadly outbreaks. Computer models allow us to explore complex structures like Bacteriophage phi29—a virus that infects bacteria—providing insights into its mechanisms and aiding in the development of targeted therapies. Simian immunodeficiency virus (SIV), closely related to HIV, poses a global health challenge. Understanding its macromolecular components helps researchers devise strategies for prevention and treatment. Rhodopsin protein molecule captures our imagination with its vital function in vision. Its elegant structure enables light detection and initiates visual signals within our eyes. TFAM transcription factor bound to DNA C015/7059 showcases how macromolecules regulate gene expression by interacting with specific regions on DNA strands—an essential process for cell functioning and development. These glimpses into the world of macromolecules highlight their significance across diverse disciplines—from cutting-edge technologies like nanotube engineering to unraveling infectious diseases or understanding fundamental biological processes. As scientists continue exploring these fascinating molecules, they pave the way for groundbreaking discoveries that shape our future.

© Copyright Media Storehouse, All Rights Reserved 2003 - 2025
Facebook     Pinterest     100% Payment Secure     Reviews IO