Fraud Blocker Skip to main content

Genetic Collection (page 5)

"Unlocking the Secrets: Exploring the Fascinating World of Genetics" In this captivating journey, we delve into the intricate realm of genetics

Background imageGenetic Collection: Sheep farming, shepherd using sterile single use pin on Texel ram nose to extract blood for

Sheep farming, shepherd using sterile single use pin on Texel ram nose to extract blood for Scrapie genotype testing, England, May

Background imageGenetic Collection: Stochastic gene expression, illustration C018 / 0906

Stochastic gene expression, illustration C018 / 0906
Stochastic gene expression, illustration. Every cell in an organism contains every single gene that makes up the organisms genome. However, they are not all active (expressed) in each cell

Background imageGenetic Collection: Tumour suppressor protein and DNA C017 / 3647

Tumour suppressor protein and DNA C017 / 3647
Tumour suppressor protein and DNA. Computer artwork showing a molecule of the tumour suppressor protein p53 (blue and pink) bound to a molecule of DNA (deoxyribonucleic acid, yellow and orange)

Background imageGenetic Collection: TATA box-binding protein complex C017 / 7082

TATA box-binding protein complex C017 / 7082
TATA box-binding protein complex. Molecular model showing a TATA box-binding protein (TBP, green) complexed with a strand of DNA (deoxyribonucleic acid, yellow) and transcription factor IIB

Background imageGenetic Collection: TATA box-binding protein complex C017 / 7088

TATA box-binding protein complex C017 / 7088
TATA box-binding protein complex. Molecular model showing a TATA box-binding protein (TBP, green) complexed with a strand of DNA (deoxyribonucleic acid, yellow) and transcription factor IIB

Background imageGenetic Collection: GAL4p activator protein C017 / 7009

GAL4p activator protein C017 / 7009
Molecular structure of the Gal4p activator protein. It consists of two Gal4p, bound to a GAL upstream activator sequence (UAS)

Background imageGenetic Collection: GAL4p activator protein C017 / 7008

GAL4p activator protein C017 / 7008
Molecular structure of the Gal4p activator protein. It consists of two Gal4p, bound to a GAL upstream activator sequence (UAS)

Background imageGenetic Collection: TATA box-binding protein complex C017 / 7084

TATA box-binding protein complex C017 / 7084
TATA box-binding protein complex. Molecular model showing a TATA box-binding protein (TBP, green) complexed with a strand of DNA (deoxyribonucleic acid, yellow) and transcription factor IIB

Background imageGenetic Collection: Adenine molecule, artwork C017 / 7200

Adenine molecule, artwork C017 / 7200
Adenine molecule. Computer artwork showing the structure of a molecule of the nucleobase adenine. Atoms are colour-coded spheres: carbon (green), nitrogen (blue), and oxygen (white)

Background imageGenetic Collection: Tumour suppressor protein and DNA C017 / 3644

Tumour suppressor protein and DNA C017 / 3644
Tumour suppressor protein and DNA. Computer artwork showing a molecule of the tumour suppressor protein p53 (blue and pink) bound to a molecule of DNA (deoxyribonucleic acid, yellow and orange)

Background imageGenetic Collection: Cytosine-guanine interaction, artwork C017 / 7215

Cytosine-guanine interaction, artwork C017 / 7215
Cytosine-guanine interaction. Computer artwork showing the structure of bound cytosine (left) and guanine molecules (right)

Background imageGenetic Collection: Tumour suppressor protein and DNA C017 / 3646

Tumour suppressor protein and DNA C017 / 3646
Tumour suppressor protein and DNA. Computer artwork showing a molecule of the tumour suppressor protein p53 (blue and pink) bound to a molecule of DNA (deoxyribonucleic acid, yellow and orange)

Background imageGenetic Collection: Thymine molecule, artwork C017 / 7366

Thymine molecule, artwork C017 / 7366
Thymine molecule. Computer artwork showing the structure of a molecule of the nucleobase thymine. Atoms are colour-coded spheres: carbon (green), nitrogen (blue), oxygen (red), and hydrogen (white)

Background imageGenetic Collection: Thymine molecule, artwork C017 / 7365

Thymine molecule, artwork C017 / 7365
Thymine molecule. Computer artwork showing the structure of a molecule of the nucleobase thymine. Atoms are colour-coded spheres: carbon (green), nitrogen (blue), oxygen (red), and hydrogen (white)

Background imageGenetic Collection: Cytosine-guanine interaction, artwork C017 / 7216

Cytosine-guanine interaction, artwork C017 / 7216
Cytosine-guanine interaction. Computer artwork showing the structure of bound cytosine (left) and guanine molecules (right)

Background imageGenetic Collection: Thymine-adenine interaction, artwork C017 / 7367

Thymine-adenine interaction, artwork C017 / 7367
Thymine-adenine interaction. Computer artwork showing the structure of bound thymine and adenine molecules. Atoms are shown as colour-coded spheres: carbon (green), hydrogen (white)

Background imageGenetic Collection: DNA molecule, artwork F007 / 4200

DNA molecule, artwork F007 / 4200
DNA molecule, computer artwork

Background imageGenetic Collection: DNA molecule, artwork F007 / 4196

DNA molecule, artwork F007 / 4196
DNA molecule, computer artwork

Background imageGenetic Collection: DNA molecule, artwork F007 / 4203

DNA molecule, artwork F007 / 4203
DNA molecule, computer artwork

Background imageGenetic Collection: DNA molecule, artwork F007 / 4207

DNA molecule, artwork F007 / 4207
DNA molecule, computer artwork

Background imageGenetic Collection: Circular DNA molecule, artwork F006 / 7088

Circular DNA molecule, artwork F006 / 7088
Circular DNA (deoxyribonucleic acid) molecule, computer artwork. Circular DNA has no ends, but consists of a ring structure

Background imageGenetic Collection: Tablet computer showing a DNA molecule F006 / 6310

Tablet computer showing a DNA molecule F006 / 6310
Tablet computer showing artwork of a DNA molecule

Background imageGenetic Collection: Circular DNA molecule, space artwork F006 / 7089

Circular DNA molecule, space artwork F006 / 7089
Circular DNA (deoxyribonucleic acid) molecule, computer artwork and space nebula artwork, depicting origin of life

Background imageGenetic Collection: Circular DNA molecule, artwork F006 / 7072

Circular DNA molecule, artwork F006 / 7072
Circular DNA (deoxyribonucleic acid) molecule, computer artwork. Circular DNA has no ends, but consists of a ring structure

Background imageGenetic Collection: DNA molecule, artwork F006 / 3715

DNA molecule, artwork F006 / 3715
DNA molecule, computer artwork

Background imageGenetic Collection: Gel electrophoresis F006 / 7181

Gel electrophoresis F006 / 7181
Gel electrophoresis. Multipipette being used to place DNA (deoxyribonucleic acid) onto agarose gel

Background imageGenetic Collection: DNA molecule, artwork F006 / 7147

DNA molecule, artwork F006 / 7147
DNA (deoxyribonucleic acid) molecule, computer artwork

Background imageGenetic Collection: Circular DNA molecule, artwork F006 / 7095

Circular DNA molecule, artwork F006 / 7095
Circular DNA (deoxyribonucleic acid) molecule, computer artwork. Circular DNA has no ends, but consists of a ring structure

Background imageGenetic Collection: Circular DNA molecule, artwork F006 / 7086

Circular DNA molecule, artwork F006 / 7086
Circular DNA (deoxyribonucleic acid) molecule, computer artwork. Circular DNA has no ends, but consists of a ring structure

Background imageGenetic Collection: DNA molecule, artwork F006 / 3711

DNA molecule, artwork F006 / 3711
DNA molecule, computer artwork

Background imageGenetic Collection: Circular DNA molecule, artwork F006 / 7083

Circular DNA molecule, artwork F006 / 7083
Circular DNA (deoxyribonucleic acid) molecule, computer artwork. Circular DNA has no ends, but consists of a ring structure

Background imageGenetic Collection: Circular DNA molecule, space artwork F006 / 7077

Circular DNA molecule, space artwork F006 / 7077
Circular DNA (deoxyribonucleic acid) molecule, computer artwork and space nebula artwork, depicting origin of life

Background imageGenetic Collection: Circular DNA molecule, artwork F006 / 7084

Circular DNA molecule, artwork F006 / 7084
Circular DNA (deoxyribonucleic acid) molecule, computer artwork. Circular DNA has no ends, but consists of a ring structure

Background imageGenetic Collection: Circular DNA molecule, space artwork F006 / 7087

Circular DNA molecule, space artwork F006 / 7087
Circular DNA (deoxyribonucleic acid) molecule, computer artwork and space nebula artwork, depicting origin of life

Background imageGenetic Collection: DNA molecule, artwork F006 / 7127

DNA molecule, artwork F006 / 7127
DNA (deoxyribonucleic acid) molecule, computer artwork

Background imageGenetic Collection: Giant chromosomes, SEM

Giant chromosomes, SEM
Giant chromosomes. Colured scanning electron micrograph (SEM) of giant (polytene) chromosomes from a fruit fly (Drosophila busckii)

Background imageGenetic Collection: DNA nucleosome, molecular model F007 / 9883

DNA nucleosome, molecular model F007 / 9883
DNA nucleosome. Molecular model of a nucleosome, the fundamental repeating unit used to package DNA (deoxyribonucleic acid) inside cell nuclei

Background imageGenetic Collection: DNA nucleosome, molecular model F007 / 9888

DNA nucleosome, molecular model F007 / 9888
DNA nucleosome. Molecular model of a nucleosome, the fundamental repeating unit used to package DNA (deoxyribonucleic acid) inside cell nuclei

Background imageGenetic Collection: Genetics research F008 / 3192

Genetics research F008 / 3192
Genetics research

Background imageGenetic Collection: Giant chromosomes, SEM P657 / 0034

Giant chromosomes, SEM P657 / 0034
Giant chromosomes. Coloured scanning electron micrograph (SEM) of giant (polytene) chromosomes from a fruit fly (Drosophila busckii)

Background imageGenetic Collection: Genetics research F008 / 3193

Genetics research F008 / 3193
Genetics research

Background imageGenetic Collection: Genetic modification, conceptual image F008 / 2056

Genetic modification, conceptual image F008 / 2056
Genetically modified plant, conceptual image

Background imageGenetic Collection: Human chromosome pair, SEM

Human chromosome pair, SEM
Human chromosome. Coloured scanning electron micrograph (SEM) of a human chromosome as a pair of identical copies called chromatids. These form as part of chromosome replication during cell division

Background imageGenetic Collection: Genetically-modified pollen grains

Genetically-modified pollen grains
Genetically-modified pollen. Conceptual composite image of a coloured scanning electron micrograph (SEM) of maize pollen grains (Zea mays) labelled with biohazard symbols

Background imageGenetic Collection: DNA sequence, artwork F008 / 3293

DNA sequence, artwork F008 / 3293
DNA sequence, computer artwork

Background imageGenetic Collection: Genetics research, conceptual image F008 / 2093

Genetics research, conceptual image F008 / 2093
Genetics research, conceptual image

Background imageGenetic Collection: Human genome, conceptual artwork F008 / 3292

Human genome, conceptual artwork F008 / 3292
Human genome, conceptual computer artwork

Background imageGenetic Collection: Genetics research F008 / 3195

Genetics research F008 / 3195
Genetics research



All Professionally Made to Order for Quick Shipping

"Unlocking the Secrets: Exploring the Fascinating World of Genetics" In this captivating journey, we delve into the intricate realm of genetics, where computer screens display mesmerizing human genetic sequences. The double-stranded RNA molecule stands as a testament to the complex nature of our genetic makeup. Witness DNA transcription in action through a stunning molecular model, unraveling the process that shapes our very existence. Amidst this exploration, an elegant leopard in its melanistic phase rests gracefully on a log, reminding us of the diversity and beauty found within genes. Computer artwork showcases a beta DNA segment surrounded by spheres, symbolizing both innovation and interconnectedness within our genetic code. The nucleotide base matrix unveils patterns that hold profound significance in understanding hereditary traits. As we peer into abstract images of DNA molecules, we are reminded of their remarkable structure and infinite possibilities they hold for life itself. The intricacies continue with the visualization of nucleosome molecules – tiny structures that play a crucial role in organizing our genetic material. Amidst these wonders lies an HIV reverse transcription enzyme; it serves as a stark reminder of how they can shape not only life but also disease. Yet even amidst challenges, there is hope as scientists tirelessly work to decipher these complexities and find solutions. Ultimately, this captivating journey through various facets of genetics leaves us awestruck by its elegance and complexity. It reminds us that every living being carries within them an extraordinary story written in their DNA – an ancient language connecting all forms of life on Earth.